GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1st / 2nd EXAMINATION-WINTER 2015

Subject Code: 110008 Date:28/12/2015

Subject Name: Mathematics – 1

Time: 10:30am to 01:30pm Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks
- Q.1 (a) Using L'hospital rule, evaluate following limits:

1.
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^2}$$
 03

$$2. \quad \lim_{x \to 1} (1-x) \tan \left(\frac{\pi x}{2}\right)$$

3.
$$\lim_{x\to 0} x^{n-1} \ln x$$
; $n > 1$

(b) Test the convergence or divergence of following series:

1.
$$\sum \frac{1}{n!}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}$$
 03

Q.2 (a) If
$$u = x^2y + y^2z + z^2x$$
, then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = 3\left(u_{xx} + u_{yy} + u_{zz}\right)$

(b) State Euler's theorem for homogeneous function and verify it for $u = \sqrt{x} + \sqrt{y} + \sqrt{z}$ by direct differentiation.

Q.3 (a) Evaluate
$$\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^2 dy dx}{\sqrt{y^4 - a^2 x^2}}$$
 by changing the order to integration.

(b) 1. Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ 05

2. Using double integration find area of an ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- **Q.4** (a) Verify Divergence theorem for $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ taken over the rectangular parallelepiped 0 < x < a; 0 < y < b; 0 < z < c
 - **(b)** Do as directed

1. Evaluate
$$\int_C (x+y)dx - x^2dy + (y+z)dz$$
 where C is $x^2 = 4y$, $z = x$, $0 \le x \le 2$

2. Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction normal to the surface $x \log z - y^2 = -4$ at (-1,2,1)

- Q.5 (a) The pressure P at any point (x, y, z) in the space $P = 400xyz^2$. Find the highest pressure at the surface of a unit sphere $x^2 + y^2 + z^2 = 1$
 - (b) Find the equation of tangent plane and the normal line to the surface 05 $2x^2 + y^2 + 2z = 3$ at the point (2,2,1)
 - (c) Find out linearization of $f(x, y, z) = x^2 + 2y^2 + 3z^2 + 6$ at (1,1,1)

Q.6 (a) If
$$a < b$$
 then prove that $\frac{b-a}{1+b^2} < \tan^{-1} b - \tan^{-1} a < \frac{b-a}{1+a^2}$

- **(b)** Using Taylor's expansion theorem, expand $f(x) = e^x$ at x = 0
- (c) Prove that $\int_{1}^{\infty} \frac{\cos x}{x^2} dx$ converges.
- Q.7 (a) Expand $e^x \cos y$ at $\left(1, \frac{\pi}{4}\right)$
 - **(b)** Test convergence of following series $\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2} \right)^n x^n; \ x > 0$
 - (c) Find the point of inflexion on the curve $y = 4(x+3)^3$
